Abstract

We examine experimentally the modifications induced at the surface of silicon and IV-IV alloys by an excimer laser above the melting threshold fluence. Laser irradiation takes place under vacuum, or in the presence of a gas. The resulting processes are respectively: laser induced polarization, pulsed laser induced epitaxy, incorporation of atoms from the gas phase, and laser chemical etching. In turn, the laser induced surface modifications and the presence of adsorbates on the surface cause important changes in the melting/solidification cycle. We describe a model calculation which takes into account non-equilibrium heat diffusion, phase change, atom diffusion, segregation and desorption. The model is applied to the laser chemical etching process, and its results are compared to the experimental data. This simulation brings information on the segregation of chlorine and on the dynamics of desorption.

Latest Publications

Dragnea Research is at the forefront of multidisciplinary innovation, exploring the intersection of nanoscale optics, quantum photonics, physical virology, and bio-architected hybrid materials with 3D nanoscale order. Their latest publications highlight groundbreaking advancements in fields such as self-assembly, optics and spectroscopy, and the physical manipulation of virus-like particles (VLPs) for chemical imaging and surface modifications. Drawing from their expertise in using near-field scanning techniques and laser-induced effects, these works showcase how nanoscale phenomena can be harnessed for applications in material science, virology, and beyond. The accompanying visual mosaic underscores the diverse range of their research, from probing molecular dynamics to the development of 3D-ordered structures, all united by a commitment to pushing the boundaries of applied and theoretical science.