Abstract

Orbital dynamics of a dielectric microparticle in air using a lensed counter-propagating dual-beam trap was studied experimentally and by numerical simulations. Relationships between the dynamic parameters, trap geometry, and optical power were examined both experimentally and computationally. We found that this scheme can provide narrow bandwidth (δν/ν ≈ 10⁻³) ) detection that is at least two orders of magnitude below typical values attainable with previously studied geometries. We predict that this characteristic makes the approach suitable for ultrasensitive in-situ detection of particle mass changes. In our experimental conditions, silica microspheres orbited on trajectories spanning tens of µm, at frequencies of up to ~ 2 kHz , at atmospheric pressure. With the help of simulations, we briefly discuss how the dual-beam lensed orbital trap approach can be further enhanced to gain unmatched capabilities to measure changes in the physical parameters associated with a particle interacting with its surrounding medium.

Latest Publications

Dragnea Research is at the forefront of multidisciplinary innovation, exploring the intersection of nanoscale optics, quantum photonics, physical virology, and bio-architected hybrid materials with 3D nanoscale order. Their latest publications highlight groundbreaking advancements in fields such as self-assembly, optics and spectroscopy, and the physical manipulation of virus-like particles (VLPs) for chemical imaging and surface modifications. Drawing from their expertise in using near-field scanning techniques and laser-induced effects, these works showcase how nanoscale phenomena can be harnessed for applications in material science, virology, and beyond. The accompanying visual mosaic underscores the diverse range of their research, from probing molecular dynamics to the development of 3D-ordered structures, all united by a commitment to pushing the boundaries of applied and theoretical science.