Abstract

While extensive studies of virus capsid assembly in environments mimicking in vivo conditions have led to an understanding of the thermodynamic driving forces at work, applying this knowledge to virus assembly in other solvents than aqueous buffers has not been attempted yet. In this study, Brome mosaic virus (BMV) capsid proteins were shown to preserve their self-assembly abilities in an aprotic polar solvent, dimethyl sulfoxide (DMSO). This facilitated protein cage encapsulation of nanoparticles and dye molecules that favor organic solvents, such as β-NaYF4-based upconversion nanoparticles and BODIPY dye. Assembly was found to be robust relative to a surprisingly broad range of DMSO concentrations. Cargos with poor initial stability in aqueous solutions were readily encapsulated at high DMSO concentrations and then transferred to aqueous solvents, where they remained stable and preserved their function for months. - Copyright © 2021 American Chemical Society

Latest Publications

Dragnea Research is at the forefront of multidisciplinary innovation, exploring the intersection of nanoscale optics, quantum photonics, physical virology, and bio-architected hybrid materials with 3D nanoscale order. Their latest publications highlight groundbreaking advancements in fields such as self-assembly, optics and spectroscopy, and the physical manipulation of virus-like particles (VLPs) for chemical imaging and surface modifications. Drawing from their expertise in using near-field scanning techniques and laser-induced effects, these works showcase how nanoscale phenomena can be harnessed for applications in material science, virology, and beyond. The accompanying visual mosaic underscores the diverse range of their research, from probing molecular dynamics to the development of 3D-ordered structures, all united by a commitment to pushing the boundaries of applied and theoretical science.