Abstract

Alphaviruses are animal viruses holding great promise for biomedical applications as drug delivery vectors, functional imaging probes, and nanoparticle delivery vesicles because of their efficient in vitro self-assembly properties. However, due to their complex structure, with a protein capsid encapsulating the genome and an outer membrane composed of lipids and glycoproteins, the in-vitro self-assembly of virus-like particles, which have the functional virus coat but carry an artificial cargo, can be challenging. Fabrication of such alphavirus-like particles is likely to require a two-step process:  first, the assembly of a capsid structure around an artificial core, second the addition of the membrane layer. Here we report progress made on the first step:  the efficient self-assembly of the alphavirus capsid around a functionalized nanoparticle core.

Latest Publications

Dragnea Research is at the forefront of multidisciplinary innovation, exploring the intersection of nanoscale optics, quantum photonics, physical virology, and bio-architected hybrid materials with 3D nanoscale order. Their latest publications highlight groundbreaking advancements in fields such as self-assembly, optics and spectroscopy, and the physical manipulation of virus-like particles (VLPs) for chemical imaging and surface modifications. Drawing from their expertise in using near-field scanning techniques and laser-induced effects, these works showcase how nanoscale phenomena can be harnessed for applications in material science, virology, and beyond. The accompanying visual mosaic underscores the diverse range of their research, from probing molecular dynamics to the development of 3D-ordered structures, all united by a commitment to pushing the boundaries of applied and theoretical science.