Abstract

Woodchuck hepatitis virus (WHV), a close relative of human hepatitis B virus (HBV), has been a key model for disease progression and clinical studies. Sequences of the assembly domain of WHV and HBV core proteins (wCp149 and hCp149, respectively) have 65% identity, suggesting similar assembly behaviors. We report a cryo-electron microscopy (cryo-EM) structure of the WHV capsid at nanometer resolution and characterization of wCp149 assembly. At this resolution, the T=4 capsid structures of WHV and HBV are practically identical. In contrast to their structural similarity, wCp149 demonstrates enhanced assembly kinetics and stronger dimer-dimer interactions than hCp149: at 23°C and at 100 mM ionic strength, the pseudocritical concentrations of assembly of wCp149 and hCp149 are 1.8 μM and 43.3 μM, respectively. Transmission electron microscopy reveals that wCp149 assembles into predominantly T=4 capsids with a sizeable population of larger, nonicosahedral structures. Charge detection mass spectrometry indicates that T=3 particles are extremely rare compared to the ∼5% observed in hCp149 reactions. Unlike hCp149, wCp149 capsid assembly is favorable over a temperature range of 4°C to 37°C; van't Hoff analyses relate the differences in temperature dependence to the high positive values for heat capacity, enthalpy, and entropy of wCp149 assembly. Because the final capsids are so similar, these findings suggest that free wCp149 and hCp149 undergo different structural transitions leading to assembly. The difference in the temperature dependence of wCp149 assembly may be related to the temperature range of its hibernating host.

Latest Publications

Dragnea Research is at the forefront of multidisciplinary innovation, exploring the intersection of nanoscale optics, quantum photonics, physical virology, and bio-architected hybrid materials with 3D nanoscale order. Their latest publications highlight groundbreaking advancements in fields such as self-assembly, optics and spectroscopy, and the physical manipulation of virus-like particles (VLPs) for chemical imaging and surface modifications. Drawing from their expertise in using near-field scanning techniques and laser-induced effects, these works showcase how nanoscale phenomena can be harnessed for applications in material science, virology, and beyond. The accompanying visual mosaic underscores the diverse range of their research, from probing molecular dynamics to the development of 3D-ordered structures, all united by a commitment to pushing the boundaries of applied and theoretical science.