Abstract

Radiation brightening was recently observed in a multifluorophore-conjugated brome mosaic virus (BMV) particle at room temperature under pulsed excitation. On the basis of its nonlinear dependence on the number of chromophores, the origins of the phenomenon were attributed to a collective relaxation. However, the mechanism remains unknown. We present ultrafast transient absorption and fluorescence spectroscopic studies which shed new light on the collective nature of the relaxation dynamics in such radiation-brightened, multifluorophore particles. Our findings indicate that the emission dynamics is consistent with a superradiance mechanism. The ratio between the rates of competing radiative and nonradiative relaxation pathways depends on the number of chromophores per virus. The findings suggest that small icosahedral virus shells provide a unique biological scaffold for developing nonclassical, deep subwavelength light sources and may open new avenues for the development of photonic probes for medical imaging applications. - Copyright © 2022 American Chemical Society

Latest Publications

Dragnea Research is at the forefront of multidisciplinary innovation, exploring the intersection of nanoscale optics, quantum photonics, physical virology, and bio-architected hybrid materials with 3D nanoscale order. Their latest publications highlight groundbreaking advancements in fields such as self-assembly, optics and spectroscopy, and the physical manipulation of virus-like particles (VLPs) for chemical imaging and surface modifications. Drawing from their expertise in using near-field scanning techniques and laser-induced effects, these works showcase how nanoscale phenomena can be harnessed for applications in material science, virology, and beyond. The accompanying visual mosaic underscores the diverse range of their research, from probing molecular dynamics to the development of 3D-ordered structures, all united by a commitment to pushing the boundaries of applied and theoretical science.